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                    Introduction
  The Diatomic Molecular Spectroscopy Database (DMSD) is a 

website that contains the spectroscopic constants of diatomic 

molecules. A new version of this website is being developed under 

the guidance of Dr. Jesús Pérez-Ríos in the theoretical AMO 

department. Unlike the previous iteration of the DMSD, the new 

version will host on-the-fly machine learning (ML) capabilities. 

With the new DMSD, users will be able to retrieve spectroscopic 

data for molecules already in the database and will be able to 

make predictions for molecules not in the database.

  Spectroscopic constants refer to the measurable aspects of 

diatomic molecules found using spectroscopy. In spectroscopy, 

the light absorbed or emitted by atoms and molecules is used to 

measure the energy transitions between their quantum states. 

From their spectra, it is possible to determine the spectroscopic 

constants of molecules. This project will predict the values of 

these constants using an ML approach.

               Methods
  To predict spectroscopic constants, regression is the obvious 

choice for the ML model type. Gaussian Process Regression 

(GPR) is the model chosen for this project. GPR is an ML 

model that assumes the targets and data follow a specified 

distribution (typically multivariate gaussian). GPR doesn't 

assume a prior functional form of the target's dependence on 

the features. Two notable aspects of GPR are that it's a 

kernelized algorithm and it learns the mean and uncertainty of 

the target as a function of the features. GPR works well on 

small data sets, making it a good choice for this project. GPR 

uses kernel functions to compute inner products; the result of 

kernelization is that ML models can learn the target as a 

function of a high dimensional (or infinite dimensional) feature 

space, making it possible to find a linear dependance between 

a new higher dimensional feature vector and the target. Using, 

training data, kernelization, and hyperparameter optimization, 

GPR learns the likely distribution of target values. The kernel 

functions used in this project are:

                          Conclusion
  The promising results of the models indicate that we are heading in the correct direction for using 

machine learning techniques in the DMSD. The future of this project will focus mainly on integrating 

ML into the DMSD. The performance of the models will continue to be improved by increasing the 

size of the training data set, experimenting with the types of kernels and model parameters, and 

trying new features. This project will also expand the capabilities of the on-the-fly ML part of the 

DMSD by including models for predicting additional spectroscopic constants.

          Training the Models

      Results and Discussion

  The models were tested on 5-6 molecules that were 

omitted from the database. These molecules are 

molecular fluorine, molecular chlorine, indium bromide, 

ruthenium carbide, cobalt (II) oxide, and hydrogen 

chloride. It should be noted that fluorine and chlorine are 

homonuclear molecules, but the models were trained 

only on heteronuclear molecules.

  The Re model performed quite well on all novel 

molecules. This result is noteworthy because two 

molecules are homonuclear whereas the training data 

consisted of only heteronuclear molecules. The 

𝜔e model performed relatively well, and the outlier in 

accuracy is F2, which is not surprising due to 

its homonuclear nature. Like the 𝜔e model, the D0 model 

did well on all molecules except F2, for which the error is 

exceptionally high. The 𝜔e𝜒e model performed well for all 
molecules except F2, continuing the trend.  To improve 

the models' accuracy going forward, it is suggested that 

more molecules be included in the training data set; 

including homonuclear molecules in the training data 
may improve the models' accuracy for such molecules.

Above is an illustration of a potential well 

similar to what would be seen in a diatomic 

molecule. The depth of the well is related to 

D0, the location of the minimum is related to 

Re, and the local parabolicity near the 

minimum is related to 𝜔e and 𝜔e𝜒e.

The distribution expression of the GPR 

model is:

Targets Features

Equilibrium Internuclear 

Separation (Å)

Groups and periods of each 

constituent atom

Harmonic Angular Frequency (cm
-1

) Groups and periods of the atoms, 𝜇, 

Re

First Anharmonic Correction (cm
-1

) Groups and periods of the atoms, 𝜇, 

Re, ln(𝜔e)

Binding Energy (eV) Groups and periods of the atoms, 

Re

*(electronegativity difference)

Re is the equilibrium internuclear distance, 𝜔e is the harmonic angular 

frequency, 𝜔e𝜒e is the first anharmonic correction, D0 is the binding energy, 
and 𝜇 is the reduced mass. For D0, the electronegativity difference is a 

feature still being tested.

Molecule Prediction (Å) Actual (Å) Percent Error 

(%)

Fluorine 1.40778 1.41193 0.294

Chlorine 2.0001 1.987 0.66

RuC 1.6418 1.635 0.42

InBr 2.6444 2.54318 3.98

CoO 1.6532 1.6279 1.55

HCl 1.26829 1.27455 0.49

Prediction data for Re

Molecule Prediction 

(cm
-1

)

Actual (cm
-1

) Percent Error 

(%)

Fluorine 788.02 916.64 14.03

Chlorine 560.201 559.7 0.09

RuC 1074.18 1030 4.29

InBr 236.291 221.0 7.03

CoO 816.281 862.4 5.35

HCl 3004.673 2990.946 0.46

Prediction data for 𝜔e

Molecule Prediction 

(eV)

Actual (eV) Percent Error 

(%)

Fluorine 2.519 1.602 57.24

Chlorine 2.4743 2.47936 0.204

RuC 6.168 6.6 6.55

InBr 3.728 3.9 4.41

CoO 3.5301 3.8  [2] 7.10

HCl 4.721 4.433 6.50

Prediction data for D0

Molecule Prediction 

(cm
-1

)

Actual (cm
-1

) Percent Error 

(%)

Fluorine 7.9412 11.236 29.32

Chlorine 2.5226 2.67 5.52

InBr 0.6455 0.65 0.69

CoO 5.3215 5.13 3.73

HCl 53.109 52.8186 0.55

Prediction data for 𝜔e𝜒e
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Example of emission and absorption spectra [3]
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An example of a GPR fit (1D feature space). The various curves 

represent possible means and show how GPR assumes no prior 
functional form. The shaded region can be viewed as uncertainty. [5]

The features of each of the models 
were selected based on previous 
work [4], physical intuition, and 

model evaluation.

Our models used either the Matern 
kernel,  RBF kernel, or products of 

the two.

The data was split between training 
and testing sets in either an 85:15 

or 90:10 ratio.

With the kernels, number of training 
iterations, and training test-split 

decided upon, 500 or 1,000 models 
for each constant were trained and 

saved; this was done to combat 
the error of any single model by 
exposing the models to different 

splits of the data.

The performance of the models 
on molecules not included in the 
database was evaluated using 

percent error analysis.
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